QR Code
Drucker-Colin, R; Fernandez-Ruiz, J; Diaz, R; Hall-Haro, C; Vergara, P; Mischner, J; Nunez, L; Ochoa, A; Alonso, ME (2003)

NORMAL PRISM ADAPTATION BUT REDUCED AFTER-EFFECT IN BASAL GANGLIA DISORDERS USING A THROWING TASK

EUR J NEUROSCI 18(3):689-694
full text

Prism adaptation is a form of visuomotor learning in which the visual and motor systems need to be adjusted because a visual perturbation is produced by horizontally displacing prisms. Despite being known for over two centuries, the neuronal substrates of this phenomenon are not yet completely understood. In this article the possible role of the basal ganglia in this kind of learning was analysed through a study of Huntington's and Parkinson's disease patients. A throwing technique requiring the use of open loop feedback was used. The variables analysed were visuomotor performance, adaptation rate and magnitude, and the after-effect. The results clearly showed that both Huntington's and Parkinson's disease groups learned at the same rate as control subjects. In addition, despite having a disturbed visuomotor performance, both experimental groups showed the same adaptation magnitude as the control group. Finally, the after-effect, which is measured after removing the prisms, is reduced in both patients groups. This reduction leads to a disruption in the normal adaptation-after-effect correlation found in normal volunteers. These results suggest that basal ganglia are not involved in this type of open-looped visuomotor learning. The large number of patients studied as well as the similarity of the findings between both populations support this hypothesis. By contrast, there is an impairment in the after-effect on both basal ganglia patient populations. This impairment may be the result of the deterioration of the perceptual recalibration process involved in visuomotor learning.