QR Code
Tapia, R; Salazar, P (2012)


NEUROCHEM RES 37(3):596-603
full text

Excitatory and inhibitory neurotransmission in the central nervous system can be modulated by neurosteroids. We previously found that in rat hippocampal slices allopregnanolone (3 alpha-hydroxy-5 alpha-pregnan-20-one), a positive GABA(A) receptor modulator, suppresses the epileptic discharges induced by 4-aminopyridine (4-AP), a convulsant K+ channel blocker that stimulates glutamate release. Here, we tested the action of allopregnanolone on the epileptogenic and excitotoxic effects of the intrahippocampal administration of 4-AP in vivo. Drugs were perfused by a microdialysis cannula-electrode in the dorsal hippocampus and the EEG was recorded. Extracellular levels of aspartate, glutamate and GABA were analyzed by HPLC in the microdialysis fractions, and 24 h after the experiment the hippocampus was studied histologically. 4-AP induced intense epileptic discharges, increased the extracellular levels of aspartate, glutamate, and GABA by 383, 420, and 245%, respectively, and produced a notable neurodegeneration in CA1 and CA3 areas. Allopregnanolone administration alone did not affect the electrical activity, amino acids levels or cellular morphology, but when co-infused with 4-AP incremented 55-77% the duration of the epileptic discharges, and potentiated 32-49% the release of glutamate in comparison with 4-AP alone. The 4-AP-induced neurodegeneration was not modified by allopregnanolone. The NMDA receptor antagonist MK-801 protected against the epilepsy and neurodegeneration produced by 4-AP, and allopregnanolone did not affect this protection. We conclude that, differently from the observations in vitro, allopregnanolone potentiated the stimulatory effect of 4-AP on glutamate release and that this may explain the potentiation of the epileptogenic effect of 4-AP in vivo.