
Abstract The brain’s biological clock, which, in mam-
mals, is located in the suprachiasmatic nucleus (SCN),
generates circadian rhythms in behaviour and physiolo-
gy. These biological rhythms are adjusted daily (en-
trained) to the environmental light/dark cycle via a
monosynaptic retinofugal pathway, the retinohypotha-
lamic tract (RHT). In this review, the anatomical and
physiological evidence for glutamate and pituitary ade-
nylate cyclase-activating polypeptide (PACAP) as princi-
pal transmitters of the RHT will be considered. A combi-
nation of immunohistochemistry at both the light- and
electron-microscopic levels and tract-tracing studies
have revealed that these two transmitters are co-stored in
a subpopulation of retinal ganglion cells projecting to 
the retino-recipient zone of the ventral SCN. The 
PACAP/glutamate-containing cells, which constitute the
RHT, also contain a recently identified photoreceptor
protein, melanopsin, which may function as a “circadian
photopigment”. In vivo and in vitro studies have shown
that glutamate and glutamate agonists such as N-methyl-
D-aspartate mimic light-induced phase shifts and that ap-
plication of glutamate antagonists blocks light-induced
phase shifts at subjective night indicating that glutamate
mediates light signalling to the clock. PACAP in nano-
molar concentrations has similar phase-shifting capacity
as light and glutamate, whereas PACAP in micromolar
concentrations modulates glutamate-induced phase
shifts. Possible targets for PACAP and glutamate are the
recently identified clock genes Per1 and Per2, which are
induced in the SCN by light, glutamate and PACAP at
night.
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Introduction

The mammalian biological clock is located in the hypo-
thalamic suprachiasmatic nuclei (SCN), which in the rat
consist of a heterogeneous group of approximately
16,000 neurons (van den Pol 1980). The SCN drives di-
urnal changes in physiology and behaviour, such as hor-
mone secretion, temperature and the sleep-waking cy-
cles, in a predictable manner thereby preparing the body
for oncoming events and demands (Klein et al. 1991).
When examined under constant conditions (constant
darkness or constant light), the endogenous rhythms
driven by the clock oscillate with a period length close to
24 h (Latin circa + dies= circadian). Consequently, the
clock needs daily adjustment (entrainment) to be syn-
chronized with the astronomical day length. Without en-
trainment, the endogenous rhythms will be “free run-
ning” resulting in a daily shift in rhythmicity depending
on the length of the endogenous period. Two types of
“zeitgebers” (photic and non-photic cues) act on the
clock and are important for its daily entrainment. The
most powerful zeitgeber known is the environmental
light/dark cycle that arises because of planetary rotation.
Photic information is processed by the retina and reaches
the brain via the optic nerves. The signalling pathway to
the circadian timing system mediating the light entrain-
ment of the clock is, however, anatomically and func-
tionally different from the neural pathway used for vi-
sion. The retinal projection innervating the circadian
pacemaker originates from a subset of retinal ganglion
cells and is known as the retinohypothalamic tract (RHT;
Moore and Lenn 1972; Moore et al. 1995). Lesion of the
optic nerves results in free running of the circadian
rhythm and blindness (Morin and Cummings 1981),
whereas selective lesions of the RHT fibres to the SCN
result in “circadian blindness” but not in loss of vision
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(Johnson et al. 1988a). Retinal projections also reach
other parts of the circadian timing system, such as the in-
tergeniculate leaflet (IGL) of the lateral geniculate com-
plex (Pickard 1985). Cells in the IGL integrate photic
and non-photic information and project to the SCN pro-
viding feedback regulation of the pacemaker via the gen-
iculo-hypothalamic tract (Moore 1995). Photic informa-
tion from the RHT is also modulated within the SCN by
non-photic input via neural projections originating main-
ly from the median raphe nucleus of the midbrain (Rea et
al. 1994; Pickard et al. 1996, 1999; Meyer-Bernstein and
Morin 1996; Meyer-Bernstein et al. 1997). At least one
of the photoreceptors mediating photic information to
the circadian timing system is functionally different from
the classical photoreceptors used for vision (von Schantz
et al. 2000). These observations are based on findings in
mice lacking the classical photoreceptors, i.e. rods (rd/rd
mice) or both rods and cones (rd/rd/cl mice). These mice
strains are visually blind as a result of severe degenera-
tion of the retina but retain the ability to entrain to the
light/dark cycle (Foster et al. 1991; Freedman et al.
1999) most likely due to an intact RHT (Provencio et al.
1998). The photopigment mediating light information to
the clock is not known (see Bellingham and Foster 2002)
but a good candidate for a “circadian photopigment” is a
recently identified opsin, melanopsin (Provencio et al.
2000), which is exclusively expressed in the ganglion
cells of the RHT (Hannibal et al. 2002; Hattar et al.
2002; Gooley et al. 2001). Until recently, the primary
neurotransmitter of the RHT was considered to be the
excitatory amino acid glutamate (for reviews, see Ebling
1996; Rea 1998). A few years ago, the widespread neu-
ropeptide pituitary adenylate cyclase activating polypep-
tide (PACAP; Vaudry et al. 2000) was found to be co-
stored with glutamate in the rat RHT (Hannibal et al.
2000). Functional studies have provided evidence that
PACAP alone or in concert with glutamate is involved in
light signalling to the clock (Harrington et al. 1999;
Chen et al. 1999; Nielsen et al. 2001).

To be established as a neurotransmitter of the RHT
mediating light signalling to the circadian timing system,
a substance should fulfil the following criteria: (1) it
should be located in the RHT, (2) it should be released
by light stimulation, (3) it should affect the cells of the
SCN similar to light (i.e. it should phase-shift the endog-
enous rhythm, change the electrical activity of SCN neu-
rons and stimulate signalling pathways mediating light-
induced phase shift) and (4) its effects should be blocked
by specific antagonists. This review focuses on potential
neurotransmitters of the RHT in the light of the above-
mentioned criteria. A description of the molecular core
clock, which is the target for the light-induced phase
shift is described in detail elsewhere (Reppert and 
Weaver 2001; King and Takahashi 2000; Okamura et al.
2002; Stanewsky 2002).

Neuroanatomical studies

Identification of the RHT

The RHT is an anatomically and functionally distinct re-
tinofugal pathway mediating the photic entrainment of
circadian rhythms. During the first part of the twentieth
century, several investigators described a retinohypotha-
lamic projection but it was Moore and Lenn (1972) and
Hendrickson et al. (1972) that conclusively verified a di-
rect projection to the SCN by using injection of tritiated
leucine or proline into the posterior chamber of the eye
followed by autoradiographic visualization. These pio-
neering studies were subsequently confirmed by investi-
gations using the subunit B of cholera toxin (ChB) as an
anterograde tracer. By injecting a conjugate of ChB and
horseradish peroxidase (CT-HRP) into the vitreous body
of the eye, the RHT projections have now been demon-
strated in several mammalian species (Pickard and 
Silverman 1981; Johnson et al. 1988b; Levine et al.
1991; Murakami et al. 1989; Murakami and Fuller 1990;
Mikkelsen 1992; Cooper et al. 1993; Tessonneaud et al.
1994). Recently, a RHT projection has also been shown
in humans by means of post mortem in vitro tracing with
neurobiotin (Dai et al. 1998). These studies have demon-
strated that the major part of the RHT projection termi-
nates in the SCN. In the rat, this projection forms a dense
aggregation of nerve fibre terminals at the chiasmal bor-
der and a dense plexus in the ventro-lateral part of the
SCN. Only a few terminals are present in the medial por-
tion of the SCN (Fig. 1). In species such as the rat, the
RHT projects mainly to the contralateral SCN, whereas
in the hamster, mouse and blind mole rat, the contralater-
al and ipsilateral projections are approximately equal
(Johnson et al. 1988b; Levine et al. 1991; Mikkelsen
1992; Cooper et al. 1993; Abrahamson and Moore
2001). The functional significance of this species differ-
ence is unclear. In addition to the SCN, the RHT projects
to the anterior hypothalamic area, the retrochiasmatic ar-
ea and the lateral hypothalamus. Projections are also
found in the perifornical area, dorsal hypothalamus and
zona incerta (Johnson et al. 1988b; Levine et al. 1991;
Mikkelsen 1992). Retinal projections considered as part
of the RHT also reach several thalamic nuclei and the
amygdaloid complex. Of these projections, which seem
to be axonal collaterals from the RHT (Pickard 1985),
the projections to the IGL and the pretectum seem to be
important for the circadian timing system (Johnson et al.
1989; Mikkelsen and Vrang 1994).

Neonatal rats and hamsters treated with mono-sodium
glutamate show severe retinal degeneration and visual
blindness but retain their ability to entrain to light 
(Pickard et al. 1982; Chambille and Serviere 1993).
These observations suggest that a distinct subset of reti-
nal ganglion cells gives rise to the RHT and have been
confirmed by retrograde tracing experiments with horse-
radish peroxidase injections into the SCN. This approach
(Pickard 1980, 1982; Pickard and Silverman 1981; 
Murakami et al. 1989) has revealed that the ganglion
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cells projecting to the SCN of hamster and cat resemble
ganglion cells classified as type III or W according to
Perry (1979). These findings have been corroborated by
transneural infection with a mutant strain of the swine al-
pha herpes virus, the Bartha strain of pseudorabies virus
(PRV-Bartha; Moore et al. 1995). When injected intraoc-
ularly, PRV-Bartha seems to have a special preference
for the ganglion cells giving rise to the RHT. After repli-
cation, the virus is transported anterogradely to the SCN
and infects neurons in the retino-recipient zone. By
trans-synaptic spread, the virus is then taken up by axon
terminals within the SCN and transported retrogradely to
the contralateral retina. Here, the virus spreads in a time-
dependent manner (Card et al. 1991). At the optimal
time point of the infection (in rat, 85–90 h after injection
of the virus into the eye), a homogeneous subset of reti-
nal ganglion cells is labelled (Moore et al. 1995). The in-
fected ganglion cells are widely distributed and display
sparsely branching processes. These neurons, whose
number is even smaller than that of neurons visualized
by the injection of retrograde tracers such as HRP and
FluoroGold into the SCN, establish the RHT (Moore et
al. 1995). The same approach has enabled the RHT to be
visualized in normal and in visually blind (rd/rd mutant)
mice (Provencio et al. 1998). These blind mice are able
to entrain to light despite the lack of rods and cones
(Foster et al. 1991).

Neurotransmitters of the RHT

Glutamate

There is accumulating evidence that glutamate is a neu-
rotransmitter of the RHT (for a review, see Ebling 1996).
Several studies have demonstrated glutamate immunore-
activity in nerve terminals of the SCN. Using post-em-
bedding techniques and electron microscopy, van den
Pol was the first to show glutamate immunoreactivity
within presynaptic nerve terminals in the rat SCN, al-
though their origin was not identified (van den Pol and
Tsujimoto 1985; van den Pol 1991). This issue was ad-
dressed a few years later by De Vries et al. (1993) who
used intraocular injection of CT-HRP and post-embed-
ding immunohistochemistry with colloidal gold particles
to show that, for the rat, the retinal nerve terminals dis-
played a significantly higher content of glutamate immu-
noreactivity than the postsynaptic dendrites and non-reti-
nal terminals. Similar results were obtained in mice
(Castel et al. 1993). Using pre-embedding techniques
and double immunohistochemistry at both the light- and
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Fig. 1A–D Photomicrographs of four sections through the rat
SCN in the rostro-caudal direction showing the retinohypothalam-
ic projection following immunohistochemical staining of the an-
terograde tracer cholera toxin subunit B with biotinylated second-
ary antibodies and biotinylated tyramide/avidine-biotin-peroxidase
and diaminobenzidine as amplification (3v third ventricle, oc optic
chiasma). Bar 400 µm
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Fig. 2A–D Double immunostaining of PACAP and glutamate in
the retina and suprachiasmatic nucleus of rat (IPL inner plexiform
layer; ONL outer nuclear layer; INL inner nuclear layer; GCL gan-
glion cell layer; Neu neuron). Fluorescence photomicrographs
showing double immunostaining of PACAP (A) and glutamate (B)
in a sagittal section of rat retina. PACAP immunoreactivity was
co-localized with glutamate in a subpopulation of glutamate-im-
munoreactive ganglion cells. Glutamate-positive cells were also
located in the inner nuclear layer (INL) from which processes
were observed to project towards the outer plexiform layer (B). 
C, D Electron micrographs showing double immunostaining for

PACAP and glutamate in the suprachiasmatic nucleus of the rat.
PACAP was visualized by the use of horseradish-peroxidase-la-
belled antibodies with tyramide amplification. Glutamate was
demonstrated by the use of 1-nm gold-labelled antibodies. The
gold particles were later silver-intensified. C Low-power electron
micrograph of PACAP-immunoreactive nerve terminals. Several
of these nerve terminals are also immunoreactive for glutamate
(arrows). D High-power electron micrograph of a double-labelled
nerve terminal making an axodendritic synapse. Several silver-in-
tensified gold particles are present (arrows). Bars 50 µm (A, B),
6 µm (C), 1 µm (D). Modified from Hannibal et al. (2000)



Fig. 3A–D PACAP staining in the retina and SCN in rat. A Photo-
micrograph of whole-mount rat retina stained for PACAP. Note
the higher accumulation of PACAP-immunoreactive retinal gan-
glion cells in the superior part of the retina and the axon projec-
tions towards the retinal papilla. B–D Three rostro-caudal sections
through the rat SCN stained for PACAP. PACAP-immunoreactive
fibres in the SCN correspond to the RHT projection. Scale bars
1 mm (A), 100 µm (B–D). Modified from Hannibal et al. (1997,
2002) with permission from Journal of Neuroscience
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electron-microscopical levels, we recently demonstrated
that, in the rat, glutamate is co-stored with PACAP in
RHT-projecting ganglion cells and their terminals
(Fig. 2; see also below and Hannibal et al. 2000).

PACAP

PACAP is a neuropeptide of the vasoactive intestinal
polypeptide (VIP)/secretin family of regulatory peptides
and is widely distributed in the central and peripheral
nervous system (for reviews, see Vaudry et al. 2000; Ari-
mura 1998). PACAP is found in two biologically active

forms: PACAP-38 consisting of 38 amino acids and 
PACAP-27, the C-terminally truncated form. PACAP-38
is the dominant form in tissues (Hannibal et al. 1995,
1998; Fahrenkrug and Hannibal 1996; Hannibal and
Fahrenkrug 2000). By use of a specific mouse monoclo-
nal antibody, PACAP was identified in nerve terminals
within the SCN and in a population of retinal ganglion
cells (Fig. 3). Tract-tracing studies with ChB and bilater-
al enucleation have indicated that PACAP immunoreac-
tivity is located in the RHT (Hannibal et al. 1997,
2001a). This has been confirmed in whole-mount prepa-
rations of rat retina by using PRV-Bartha virus tracing
and double immunohistochemistry for PACAP: virus-
containing retinal ganglion cells have been shown to be
PACAP immunoreactive (Fig. 4; see also Hannibal et al.
2001a) indicating that PACAP-containing retinal gangli-
on cells constitute the RHT projection to the SCN. Inter-
estingly, the PACAP-containing RHT persists in rats that
have been neonatally blinded by mono-sodium glutamate
treatment, although the amount of PACAP is reduced by
the treatment (Hannibal et al. 2001a). 



Co-existence of PACAP and glutamate

By using double immunofluorescence and polyclonal an-
tibodies against L-glutamate in combination with a
mouse monoclonal PACAP antibody, PACAP was found
to be co-stored with glutamate in a subpopulation of glu-
tamatergic retinal ganglion cells and in nerve terminals
in the ventro-lateral SCN (Fig. 2; see also Hannibal et al.
2000). The co-localization of PACAP and glutamate in
the same axon terminals was confirmed by ultrastructur-
al studies using pre-embedding techniques and double
immunostaining with a combination of biotinylated tyr-
amide-diaminobenzidine (DAB) and silver-intensified
gold-labelled antibodies. These results demonstrated that
PACAP and glutamate are co-stored in retinal terminals
in the retino-recipient zone of the SCN (Fig. 2C, D; see
also Hannibal et al. 2000).

Other neurotransmitters of the RHT

Excitatory amino acids

Apart from glutamate, a number of closely related mole-
cules and derivates may also function as neurotransmitters
of the RHT. Of these molecules, L-aspartate and N-acetyl-
aspartylglutamate (NAAG) are the best studied. Optic
nerve stimulation increases the concentration of L-aspar-
tate in the SCN (Liou et al. 1986), and the injection of L-
aspartate into the SCN results in minor phase advance
during subjective day (De Vries and Meijer 1991). The
presence of L-aspartate has been shown within cells of the
SCN but, so far, L-aspartate has not been demonstrated in
the RHT (Csaki et al. 2000). On the other hand, NAAG,
which can act as an endogenous ligand for glutamate re-
ceptors, has been found in the RHT (Moffett et al. 1990)
but its physiological significance remains to be clarified.

Substance P

Substance P (SP) has also been suggested as a neuro-
transmitter of the RHT. This undecapetide is widely dis-
tributed (Halliday et al. 1995) and is considered to be a
neurotransmitter in both the central and the peripheral
nervous systems (Harrison and Geppetti 2001). SP im-
munoreactivity within the SCN varies among species. In
mouse and hamster, only a few SP-immunoreactive
nerve fibres and cell bodies are located in the SCN 
(Piggins et al. 2001a; Abrahamson and Moore 2001). In
the rat, SP-immunoreactive cell bodies and nerve fibres
are confined to the ventral part of the SCN. The nerve fi-
bres have been suggested to originate from the eye be-
cause their number decreases after enucleation (Takatsuji
et al. 1991; Mikkelsen and Larsen 1993). However, these
observations have not been confirmed by other studies
(Otori et al. 1993; Hartwich et al. 1994; Hannibal and
Fahrenkrug 2002). This discrepancy has raised the ques-
tion as to whether the SP fibres belong to the RHT or re-
present intrinsic fibres originating from SP perikarya in
the ventral SCN (Mikkelsen and Larsen 1993; Piggins et
al. 2001a). This issue has been recently addressed by the
injection of ChB into the eye and the simultaneous im-
munocytochemical demonstration of this anterograde
tracer, PACAP and SP. The results have demonstrated
that SP-immunoreactive fibres in the rat SCN do not
originate from the eye. In this context, it is also notewor-
thy that the SP immunoreaction is located in amacrine
and displaced amacrine cells but not in retinal ganglion
cells containing PACAP immunoreactivity (Hannibal
and Fahrenkrug 2002). Functionally, SP has been shown
to phase-shift the endogenous rhythm in vitro (Shibata et
al. 1992; Kim et al. 2001), whereas the results from in
vivo injection of SP and/or antagonists are conflicting
(Piggins and Rusak 1997; Challet et al. 1998). Neverthe-
less, a modulatory role of SP in light-induced phase
shifting is likely, irrespective of whether SP is an intrin-
sic or an afferent neurotransmitter in the SCN (Kim et al.
2001).
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Fig. 4 Confocal laser scanning images showing co-localization of
PRV-Bartha virus (A) and PACAP (B) and PRV-Bartha/PACAP
(C) in a whole-mount preparation of rat retina. Animals received
an intravitreal injection of virus 85–90 h before fixation. Bar
50 µm (see also Hannibal et al. 2001b)



known. Previous studies in retinally degenerated mutant
mice lacking rods (rd/rd; Foster et al. 1991) and both
rods and cones (rdta/cl; Freedman et al. 1999) have
demonstrated that the classical photoreceptor cells, the
rods and cones, are dispensable for the circadian light
response (von Schantz et al. 2000). Similarly, many
blind people lacking conscious perception of light ex-
hibit normal photic entrainment of the circadian rhythm
(Czeisler et al. 1995). Two photopigments have been
considered as “circadian photopigments”, the crypto-
chromes and melanopsin. The vitamin-B2-based crypto-
chromes CRY1 and CRY2 are found in the mammalian
retina (Miyamoto and Sancar 1999). Studies with
knock-out mice lacking one or both Cry genes have
shown that the CRY molecules are important as central
clock core components but not necessary for photic sig-
nalling to the brain (Vitaterna et al. 1999; van der Horst
et al. 1999). Action spectrum analyses for light entrain-
ment of locomotor activity suggest that an opsin-based
photopigment with an absorption peak around 500 nm is
responsible for circadian photoentrainment in mammals
(Provencio and Foster 1995; Takahashi et al. 1984; 
Bellingham and Foster 2002). Melanopsin is a newly
discoverd photopigment recently found in the inner reti-
na (Provencio et al. 2000). It belongs to one of four op-
sins expressed outside the retinal photoreceptor layer.
Our recent finding that melanopsin is exclusively ex-
pressed in the PACAP-containing retinal ganglion cells
that constitute the RHT suggests that melanopsin is a
circadian photopigment (Fig. 5, see also Hannibal et al.
2002). Melanopsin expression has been demonstrated by
in situ hybridization with melanopsin cRNA probes and
by immunohistochemistry using specific antibodies
raised against a fusion protein containing the C-terminal
part of mouse melanopsin (Hannibal et al. 2002). In co-
localization studies the density of ganglion cells con-
taining melanopsin and PACAP has been found in a
range of 31 to 39 cells/mm2 in the superior half of the
retina and 5 to 9 cells/mm2 in the lower half of the reti-
na. The functional significance of this distribution pat-
tern remains to be determined (Hannibal et al. 2002).
Melanopsin immunoreactivity has been located at the
surface of the perikarya and the dendritic processes of
retinal ganglion cells, thereby increasing the light per-
ceiving area of the cell (Fig. 5).

Although the functional role of melanopsin as a circa-
dian photopigment remains to be established, we recent-
ly found that white light induces c-fos immunoreactivity
in PACAP-containing retinal ganglion cells. This immu-
noreactivity is sustained only in the PACAP-containing
retinal ganglion cells as long as light is turned on (Fig. 6,
see also Hannibal et al. 2001a) suggesting that these
cells are directly photosensitive possibly via activation
of the melanopsin photopigment. This notion is support-
ed by electrophysiological studies of the flat-mount in
vitro preparation of rat retina (Berson et al. 2002; Hattar
et al. 2002). In these experiments, SCN-projecting gan-
glion cells identified by retrograde tracing respond to
light, despite a chemical blockade of synaptic transmis-
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Neurotransmitter receptors in the SCN

Glutamate receptors

Glutamate is the endogenous ligand for a large family of
receptors belonging to two families: the ionotropic gluta-
mate receptors, viz. N-methyl-D-aspartate (NMDA) and
non-NMDA and the AMPA and kainate-preferring re-
ceptors, and the metabotropic glutamate receptors, i.e.
G-protein-coupled receptors. NMDA, non-NMDA and
metabotropic receptors have all been identified within
the SCN by radioligand binding, in situ hybridization
histochemistry and immunohistochemistry (for a review,
see Ebling 1996). Subtypes of NMDAR1C are expressed
in the entire SCN, whereas NMDAR2C is restricted to
the dorso-medial SCN. The localization raises questions
regarding the role of NMDAR2C in photic entrainment
(Ebling 1996). mRNAs encoding the AMPA (GluR1, the
GluR2 and the GluR4), the kainate (GluR6 and GluR7)
and the metabotropic (mGluR1 and mGluR5) receptors
have also been demonstrated within the SCN (Ebling
1996; for functional data, see Kopp et al. 2001).

PACAP receptors

PACAP exerts its function via two classes of G-protein-
coupled receptors. (1) The type I receptor corresponding
to the PAC1 receptor is coupled to adenylate cyclase 
and phospholipase C depending on the splice variant
(Spengler et al. 1993) and binds PACAP with a 1000-
fold higher affinity than VIP. (2) The type II receptor
corresponding to the VPAC1 and VPAC2 receptors binds
PACAP and VIP with equal affinity and is coupled main-
ly to adenylate cyclase (Harmar et al. 1998). The type II
receptors have a relatively restricted distribution within
the CNS (Usdin et al. 1994; Vaudry et al. 2000; Sheward
et al. 1995), whereas the PAC1 receptor is widely distrib-
uted in the brain and spinal cord (Vaudry et al. 2000;
Shioda et al. 1997; Hashimoto et al. 1996). In situ hybrid-
ization studies have demonstrated the PAC1 (Hannibal et
al. 1997; Cagampang et al. 1998a) and the VPAC2 (Lutz
et al. 1993; Sheward et al. 1995; Cagampang et al.
1998b) but not the VPAC1 receptor in the SCN 
(Sheward et al. 1995; Usdin et al. 1994). The expression
of both PAC1 and VPAC2 receptor mRNAs in the SCN
show a circadian rhythm with a low amplitude with
peaks during subjective day and mid subjective night
(Cagampang et al. 1998a) and mid to late subjective day
and late subjective night (Cagampang et al. 1998b), re-
spectively. So far, little is known about the phenotype of
SCN cells expressing the two receptors.

Photopigments in the retina responsible 
for light signalling to the SCN

The photopigment responsible for light activation of the
RHT and its cellular localization in the retina is un-



sion (Berson et al. 2002). Furthermore, the light response
does not reflect electric coupling to rods and cones be-
cause the SCN-projecting cells are sustained in a depo-
larizing state and not in a hyperpolarizing state as are the
ganglion cells coupled to rods and cones. This indicates
that such retinal ganglion cells are directly photosensi-
tive. Together with the demonstration of melanopsin im-
munoreactivity in SCN-projecting ganglion cells (Hattar
et al. 2002), the results point towards melanopsin as be-
ing a good candidate for a photopigment involved in
light signalling to the circadian timing system.

Behavioural and physiological studies

Before considering the functional data concerning poten-
tial neurotransmitters of the RHT, the effects of light
stimulation on the circadian timing system will be brief-
ly discussed. The physiological properties of a “photo-

80

Fig. 5A–D Melanopsin is exclusively located in PACAP-immu-
noreactive retinal ganglion cells. A–C Low-power confocal laser
scanning photomicrographs showing a randomly selected part of
the retina double-immunostained for melanopsin (A), PACAP (B)
and melanopsin/PACAP (C). D High-power photomicrograph
showing double-immunostaining of melanopsin (green) and 
PACAP (red) in the same ganglion cells of whole-mount retina.
Note the punctate melanopsin immunoreactivity on the surface of
the cell body and processes. Insert in D shows high magnification
of a melanopsin/PACAP-containing dendrite. Bars100 µm (A–C),
20 µm (D). From Hannibal et al. (2002) with permission from
Journal of Neuroscience

Fig. 6 Confocal laser scanning image showing co-localization of
PACAP-IR (red) and c-fos-IR (green) in retinal ganglion cells in a
retinal whole-mount from a rat kept in constant light for 19 h. 
PACAP and c-fos immunoreactivities are completely co-localized
in the ganglion cells. Bar 50 µm. See also Hannibal et al. 2001a

▲



entrainment” system is the ability of daily adjustment of
the endogenous period length (i.e. free-running period τ)
to the astronomical 24-h day length. To fulfil these crite-
ria, the phase shifts induced by light stimulation should
have a size [amplitude: ∆φ(φ)] that adjusts this deviation
[∆φ(φ)=τ–T, where T always equals 24 h; Daan and 
Pittendrigh 1976]. τ is a unique property of the circadian
pacemaker and varies among individuals and species
(Pittendrigh and Daan 1976; Summers et al. 1984;
Wright et al. 2001). Similarly, the phase-response curves
to light (PRC) obtained by light stimuli applied during a
24-h period to animals kept under constant darkness are
species-dependent (Fig. 7B). The general pattern is,
however, that light causes a phase delay when applied
during late subjective day and early subjective night,
whereas light applied between late subjective night and
early subjective day phase-advances the endogenous
rhythm. Light given during the subjective day has little
effect on the phase (Fig. 7). In short, the response to a re-
setting light stimulus at a given phase of the rhythm is
correlated with the individual τ; fast pacemakers with a

short τ as is found in the mouse tend to be more delayed
and/or less advanced than slow pacemakers with a long τ
as is found in rat and hamster (Fig. 7; see also Daan and
Pittendrigh 1976).

A candidate neurotransmitter mediating the effects of
light in the RHT should be released from the nerve ter-
minals in the SCN and affect the phase of the circadian
pacemaker similar to light. Antagonists to the transmitter
receptor should decrease or block the light-induced ef-
fects, such as phase shifts. These issues have been ad-
dressed in detail for glutamate by using in vivo and in
vitro models (see Ebling 1996) and to a minor extent for
PACAP. The end-point parameter determined in most in
vivo experiments is the behavioural phase shift in 
running-wheel activity (for a description of the method,
see Pittendrigh and Daan 1976). Moreover, light-induc-
ible genes, such as the immediate-early-gene c-fos (cf.
Kornhauser et al. 1996) or clock genes (cf. Chang and
Reppert 2001), and phosphorylation of the transcription
factor cAMP responsive element binding protein
(CREB; Ginty et al. 1993; Obrietan et al. 1999) and the
extracellularly regulated kinase p44/42 mitogen-activat-
ed protein kinase (ERK/MAPK; Obrietan et al. 1998)
have been analysed in the SCN. These molecules seem
to be important elements of the light signalling pathways
to the clock, because they are rapidly induced/phosphor-
ylated in the SCN by light. In vitro brain-slice prepara-
tions containing the SCN (Gillette 1986) have been use-
ful in studying the phase-shifting effects of various neu-
rotransmitters (and agonists). Brain slices in which the
optic nerve is left in situ and electrically stimulated have
been used to study the effects of various blockers of the
RHT transmitters (for a review, see Ebling 1996). Re-
cently, the model has also proved useful for examining
changes in clock gene expression after application of
RHT transmitters (Nielsen et al. 2001).
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Fig. 7 A Schematic presentation of the activity rhythm of a noc-
turnal animal where each horizontal linerepresents the activity of
the animal in 1 day. The animal was entrained to a light/dark pho-
toperiod (LD) as represented above the record. The animal was
then released into constant darkness (DD), the activity rhythm
now being “free-running”. During the free-running period, the ani-
mal experienced light pulses during subjective day (1), early sub-
jective night (2) and late subjective night (3). The light pulse giv-
en during the day had little or no effect on the phase of the endog-
enous rhythm, whereas a light pulse given at early subjective night
resulted in a phase delay of the overt rhythm (indicated by 2 in A
and B). A light pulse given at late subjective night resulted in a
phase advance of the overt rhythm (indicated by 3 in A and B). 
B Complete phase response curve to light stimulation during a 
24-h period. Phase delays are plotted in the negative direction and
phase advances in the positive direction. The horizontal axisin B
represents one circadian day. Note the species differences in re-
sponse to light stimulation. Modified from Meijer and Rietveld
(1989) and Daan and Pittendrigh (1976)



Is glutamate released from the RHT?

The extracellular concentration of glutamate and aspar-
tate in hamster SCN was shown, by in vivo microdialy-
sis, to change during the 24-h light/dark cycle, with the
highest level being found during the dark phase (Glass et
al. 1993; Rea et al. 1993). However, these results had a
low resolution because of the sensitivity of the technique
and may not necessarily be related to differential amino
acid release from RHT nerve terminals. Using an in vitro
approach and tritium-labelled amino acids, Liou et al.
(1986) have demonstrated that stimulation of the optic
nerve causes the release of 3H-glutamate and 3H-aspar-
tate from a brain slice containing the SCN. These find-
ings are supported by the demonstration that the activa-
tion of SCN neurons by optic nerve stimulation can 
be blocked by the application of NMDA antagonists 
(Shibata et al. 1986; De Vries et al. 1994).

Glutamate phase-shifts the endogenous rhythm

In initial experiments, in vivo injections of L-glutamate
into or adjacent to the SCN failed to induce phase shifts
in running-wheel activity as seen for light (for discus-
sions of these results, see Meijer et al. 1988; Ebling
1996). In vivo application of NMDA to the SCN was,
however, recently shown to mimic light-induced phase
shifts in the behavioural rhythm (Mintz and Albers 1997;
Mintz et al. 1999). Several in vitro studies with a brain-
slice model (Ding et al. 1994; Shibata et al. 1994) also
showed that the application of NMDA mimics light-in-
duced phase shift at night. All results support a role for
glutamate in light signalling to the clock.

Glutamate antagonist blocks light-induced phase shifts

Further support for glutamate as a mediator of light in-
formation to the circadian timing system comes from ex-
periments showing that NMDA and non-NMDA antago-
nists block light-induced phase shifts at both early and
late night (Colwell et al. 1990, 1991; Colwell and 
Menaker 1992). Moreover, evidence has been provided
that glutamatergic signalling pathways involve nitric 
oxide (Ding et al. 1994, 1997), phosphorylation of
CREB (Ding et al. 1997), calcium release via ryanodine
receptor activation at early night (Ding et al. 1998) and
cGMP-dependent pathways at late subjective night
(Prosser et al. 1989; Gillette and Mitchell 2002).

Glutamate induces light-sensitive genes within the SCN
similar to light

Light induces the expression of several immediate-early
genes including c-fosat time points at which light causes
a phase shift of the endogenous rhythm. Induction of 
c-fos can be mimicked by the application of glutamate

agonists. This induction is seen in the ventro-lateral SCN
and can be reduced markedly by adding a glutamate 
antagonist before the light pulse (reviewed by Kornhaus-
er et al. 1996; Rea 1998). The induction of c-fosis, how-
ever, not necessarily linked to a light-induced phase shift
(Honrado et al. 1996; Hannibal et al. 2001b). At certain
time points in the night, light induces c-fos but this in-
duction is not followed by a phase shift (Sutin and 
Kilduff 1992). Recently, light has been shown to stimu-
late the ERK/MAPK and the CREB signalling pathways
in the SCN. These effects are attenuated by a glutamate
antagonist (PD 98059) indicating that glutamate receptor
activation is followed by the phosphorylation of ERK
and CREB (Obrietan et al. 1998). More recently, the
clock genes Per1and Per2have been attributed a role in
light-induced phase shifts because they are rapidly in-
duced by light stimulation at those time points at which
light phase-shifts the endogenous rhythm (Shigeyoshi et
al. 1997; Zylka et al. 1998; Albrecht et al. 1997; Yan et
al. 1999; Field et al. 2000; Akiyama et al. 1999). In vit-
ro, the expression of both genes in the SCN is induced at
late night by glutamate (Nielsen et al. 2001) and the glu-
tamate-induced phase shift of neuronal firing activity is
blocked by mPer1 antisense-oligonucleotide treatment
(Akiyama et al. 1999).

Is PACAP released from the RHT?

A few studies have addressed this issue by an indirect
approach. In tissue extracts punched from the SCN, the
PACAP concentration is lower during the day than dur-
ing the night. This variation seems to be diurnal, i.e. to
depend on the light/dark cycle, since no concentration
difference has been found in specimens from animals
kept in constant darkness (Fukuhara et al. 1997). The re-
sults may suggest that PACAP is released during the day
and stored during the dark phase. As described below,
PACAP can phase-shift the electrical rhythm during the
subjective day in vitro (Hannibal et al. 1997). Using a
horizontal brain-slice preparation and optic nerve stimu-
lation with different stimulation frequencies, Burgoon
and Gillette (2000) have shown that, in the SCN, the
phase advance of the electrical activity that is induced at
mid subjective day is blocked by the application of the
specific PACAP antagonist PACAP6–38, indicating that
PACAP is released upon optic nerve stimulation. Recent-
ly, the light-induced phase shift has been found to differ
between homozygous PAC1 knock-out and wild-type
mice, suggesting that PACAP is released from the RHT
during light stimulation at night (Hannibal et al. 2001b).
This finding conforms to previous observations showing
that intracerebroventricular injection of specific neutral-
izing PACAP antibodies modulates the light-induced
phase advance (Chen et al. 1999).
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PACAP phase-shifts the endogenous rhythm similar 
to light

Recent studies have shown that injection of PACAP into
the SCN in vivo phase-shifts the endogenous rhythm of
running-wheel activity (Harrington et al. 1999; Piggins
et al. 2001b) and the electrical firing activity in vitro
(Harrington et al. 1999) similar to light. Interestingly,
this effect of PACAP is dose-dependent, a maximal re-
sponse being elicited by nanomolar concentrations. In
micromolar concentrations, PACAP has no direct effect
on the phase (Hannibal et al. 1997) but it modulates the
glutamate-induced phase shift (see below and Chen et al.
1999).

The role of PACAP as a mediator of light signalling
to the clock has further been supported by our recent
studies with knock-out mice lacking the PAC1 receptor
(Hannibal et al. 2001b). Both wild-type and homozygous
(PAC1-/-) mice appear to have an anatomically intact
RHT projection to the SCN but show different circadian
behaviour during constant darkness and in response to
light stimulation (Hannibal et al. 2001b). PAC1-/- mice
have a significantly shorter τ compared to wild-type
mice and responded to light stimulation at early night
with a significantly higher sensitivity than wild-type
mice. As a result, the homozygous mice respond to a
light pulse given at early subjective night with an in-
creased phase delay. In contrast to the wild-type mice,
light stimulation of homozygous mice at late subjective
night results in a phase delay and not in a phase advance.
The findings suggest that PACAP signalling is involved
in the regulation of the clock sensitivity to light stimula-
tion and in the mechanism determining the direction of
the phase shift at late night (Hannibal et al. 2001b).

As previously mentioned, light entrainment of the
clock is believed to involve the induction of c-fos
(Kornhauser et al. 1996) and the recently identified clock
genes Per1and Per2 (Shigeyoshi et al. 1997; Zylka et al.
1998; Albrecht et al. 1997; Yan et al. 1999; Field et al.
2000; Akiyama et al. 1999), because these genes are rap-
idly induced in the SCN by light stimulation at those
time points at which light phase-shifts the clock. Com-
pared with wild-type mice, mice lacking the PAC1recep-
tor show larger phase delays in response to light but a
marked attenuation of light-induced mPer1, mPer2and
c-fos gene expression in the retino-recipient zone of the
SCN (Hannibal et al. 2001b). This dissociation between
the light-induced phase shift of running-wheel activity
and induction of c-fos, Per1and Per2gene expression in
the SCN indicates that light-induced behavioural phase
shifts are not always dependent of c-fos/clock gene ex-
pression in the SCN. Photic stimulation at late night pro-
vokes a phase delay in PAC1-/- mice but a phase advance
in wild-type mice. However, the light-induced mPer1
and c-fos gene expression of PAC1-/- mice is similar to
that in wild-type mice suggesting that PACAP and PAC1
receptor signalling play a minor, if any, role in the light-
induced gene expression of mPer1and c-fos at this time
point (Hannibal et al. 2001b).

PACAP phase-shifts the endogenous rhythm similar 
to dark pulses

Whereas light stimulation affects the clock at night, dark
pulses presented during the subjective day phase-ad-
vance the endogenous rhythm similar to non-photic stim-
uli (Hastings et al. 1998a). If animals are kept in con-
stant light and then exposed to a dark pulse (2–4 h) in
the middle of the subjective day, a phase advance of the
endogenous rhythm is observed (Boulos and Rusak
1982; Ellis et al. 1982). In our initial experiments with
an in vitro rat brain-slice preparation, application of 
PACAP in micromolar concentrations to the SCN caused
a phase advance in the electrical firing rhythm during the
subjective day but not during the subjective night. This
effect involved a cAMP/protein kinase-A-dependent
pathway (Hannibal et al. 1997). These observations were
later confirmed in the hamster (Harrington and Hoque
1997; Harrington et al. 1999). One might speculate that
the change from light to darkness may cause a release of
PACAP from the RHT, thus explaining the phase ad-
vance during subjective day. This assumption is support-
ed by the ability of PACAP to stimulate the phosphoryla-
tion of CREB during late subjective day (Kopp et al.
1997; von Gall et al. 1998). It is also possible that 
PACAP signalling from the RHT interacts with non-
photic transmitters released in the SCN, since neuropep-
tide Y, an important neurotransmitter of the geniculo-hy-
pothalamic tract mediating non-photic information to the
SCN (cf. Yannielli and Harrington 2001), blocks the 
PACAP-induced phase advance during subjective day in
vitro (Harrington and Hoque 1997).

PACAP interacts with glutamate signalling during 
light-induced phase shift

The functional significance of the co-existence of 
PACAP and glutamate in the RHT is not fully under-
stood. PACAP has been reported to modulate glutamate-
rgic signalling in the SCN (Chen et al. 1999; Kopp et al.
2001). In an in vitro brain-slice model, Chen et al.
(1999) showed that PACAP when applied in micromolar
concentrations together with glutamate at early night po-
tentiated the glutamate-induced phase delay, whereas the
specific antagonist PACAP6–38 blocked the glutamate-
induced phase shift at CT14. In contrast, PACAP (in 
micromolar concentrations) blocked the glutamate-in-
duced phase-advance, when co-administered with gluta-
mate at late subjective night, and co-administration of
PACAP6–38 potentiated the glutamate-induced phase
shift at this time point. The clock-controlled modulatory
effects of PACAP on glutamate signalling were con-
firmed by in vivo experiments. The intraventricular in-
jection of a specific PACAP antibody resulted in a poten-
tiation of the light-induced phase advance (Chen et al.
1999) suggesting that PACAP is an important modulator
of glutamate-induced phase shift. A modulatory role of
PACAP on glutamate signalling was further supported
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by Kopp et al. (2001) who analysed the effects of 
PACAP and glutamate on calcium signalling in cultured
SCN neurons and showed that PACAP modulates gluta-
mate signalling via different mechanisms. On the one
hand, PACAP amplified glutamate-dependent calcium
increases by interacting with AMPA/kainate signalling.
On the other hand, PACAP reduced/inhibited calcium in-
creases elicited by glutamate acting on metabotropic re-
ceptors. The latter action was mimicked by cAMP (Kopp
et al. 2001). The interaction between PACAP and gluta-
mate signalling seems to involve the per genes, since our
recent findings show that in vitro application of PACAP
in nanomolar concentrations induces per1and per 2gene
expression in the SCN at late night, whereas micromolar
concentrations of PACAP block glutamate-induced per
gene expression in the SCN (Nielsen et al. 2001).

“Non-photic” modulation of photic signalling 
to the SCN

Although light is the principal zeitgeber to the mammali-
an circadian system, efferent projections from different
parts of the brain to the SCN mediating behavioural
states, such as arousal and/or sleep deprivation and meta-
bolic changes, act together with humoral factors in the
entrainment process by modulating light-induced phase
shifts during subjective night. Signalling pathways and
neurotransmitters mediating these non-photic cues are
beyond the scope of this review but have been reviewed
elsewhere (Hastings et al. 1998a, 1998b; Yannielli and
Harrington 2001; Morin 1999; Rea 1998). However,
some projections and transmitters/modulators that pre-
synaptically act on the RHT terminals in the SCN should
be considered. The serotonergic (5-HT) pathway from
the median raphe nucleus (Leander et al. 1998; Meyer-
Bernstein and Morin 1996) has been shown to block or
modulate light-induced phase shift at both early and late
night (Rea et al. 1994). 5-HT on the other hand has little
effect on the phase of the clock at night (Meyer-
Bernstein et al. 1997). Anatomical and functional data
indicate that 5-HT modulates light signalling to the clock
via 5-HT1B receptors located on RHT terminals (Pickard
et al. 1996, 1999; Pickard and Rea 1997; Belenky and
Pickard 2001). These findings are supported by studies
in mice lacking the 5-HT1B receptor; these mice have an
increased sensitivity to light compared with wild-type
mice (Pickard et al. 1999). It is possible that a behav-
ioural state such as sleep deprivation (Mistlberger et al.
1997; Challet et al. 2001) causes release of 5-HT in the
SCN acting on presynaptic receptors controlling the re-
lease of transmitters from RHT terminals within the
SCN.

Conclusions

Anatomical and functional data indicate that both 
PACAP and glutamate are neurotransmitters of the RHT,

mediating light signalling to the clock, whereas the evi-
dence for other putative transmitters is less convincing.
It remains to be determined whether the phase-shifting
effect of PACAP during subjective day in vitro is of
physiological relevance. A detailed analysis of the re-
lease of both PACAP and glutamate during various light-
ing conditions should increase the functional understand-
ing of their interaction within the circadian timing
system.
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